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SUMMARY 
Numerical algorithms are presented which combine spectral expansions on elemental subdomains with 
boundary integral formulations for solving viscous flow problems. Three distinct algorithms are described. 
The first demonstrates the use of spectral elements for the classic boundary integral method for steady 
Stokes flow. The second extends this algorithm to include domain integrals for solution of the unsteady 
Navier-Stokes equations. The third algorithm explores the use of boundary integrals as a means of 
consolidating uncoupled elemental solutions in a domain decomposition approach. Numerical results 
demonstrating high-order convergence are presented in each case. 
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1. INTRODUCTION 

In recent years, spectral methods have proven to be a valuable tool in the numerical investigation 
of fluid dynamics problems. Within this classification, we include not only classic Fourier 
expansions but also high-order expansions based on orthogonal polynomials. Despite its rather 
recent development, the literature in this field is quite extensive and a proper review is not 
possible here. We refer the reader to the review paper by Hussaini and Zang‘ and the monograph 
by Canuto et a1.’ for a proper introduction to the subject. In early work on spectral methods 
a single expansion was employed over the entire fluid domain-restricting the method to 
relatively simple geometries. A notable example of this basic approach is the simulation of 
turbulent transition by Orszag and Kelk3 To extend spectral methods to a broader range of 
problems, one may divide the fluid domain into a number of subdomains and employ separate 
spectral expansions on each domain. This leads to a broad range of algorithms which may be 
classified as domain decomposition methods. Various algorithms within this class are distin- 
guished by the manner in which the equations are satisfied (e.g. weighted residuals or pointwise 
collocation) and the manner in which continuity of physical variables is enforced at element 
borders. Surveys of different strategies may be found in the aforementioned monograph of 
Canuto et a1.2 and in recent conference proceedings such as Canuto and Q ~ a r r e r o n i . ~  

Among the various domain decomposition strategies, we are most interested in the method 
known as spectral elements first proposed by Korczak and Patera.’ This is a p-type finite element 
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formulation employing orthogonal polynomial bases, typically using Chebyshev or Legendre 
polynomials. In its first implementation, the method was restricted to rectilinear elements, 
however the algorithm was easily generalized to isoparametric mapping of the geometry. Maday 
and Patera6 give an updated description of this algorithm. Demaret and Deville7 present an 
algorithm with features similar to the spectral element method, but based on a collocation 
solution of the equations with strong enforcement of function continuity at element borders. The 
spectral element algorithms have successfully combined the high-order convergence rates of 
spectral methods with the generality of finite element methods to produce a hybrid method of 
great versatility. 

Spectral methods were initially developed for a special class of problems, but later generalized 
to handle a broad range of applications. Boundary integral methods represent another class of 
algorithms of quite different character, which have developed in a similar fashion. Boundary 
integral methods rely on the existence of a fundamental solution to convert a partial differential 
equation into an integral equation over the boundary of the domain. The essential feature of the 
method is that there is no need to discretize the interior of the domain. Thus, the dimensionality 
of the problem is reduced, and the discretized problem has far fewer unknowns than that of a full 
domain discretization. The drawback is that the linear system representing the discretized 
equation has a dense matrix as opposed to the sparse banded matrices encountered in many 
domain methods. On balance, the reduction in the size of the system is more important, and 
boundary integral techniques have been used with great success. For an overview of the 
applications of boundary integral methods in solid mechanics, fluid mechanics, geophysics, 
acoustics and other areas, the reader is directed to the numerous symposia proceedingss-16 
covering this area. 

The earliest fluid dynamics application of boundary integral methods was in aerodynamics 
where so-called panel methods were used for potential flow calculations. Next, Y oungren and 
Acrivos17 showed that these techniques were effective for studying low Reyndlds number viscous 
flow, and the boundary integral method has since have proven to be the most popular algorithm 
for the Stokes equations. Higdon" reviews some of the efforts in this area, while the monographs 
of Kim and Karrila' and Pozrikidis" present extensive developments on this subject. 

While the classic boundary integral method is limited to special circumstances such as Stokes 
flow or potential flow, numerous authors have considered its generalization to the full 
Navier-Stokes equations. All of these generalizations require some discretization of the entire 
fluid domain, thus forfeiting the advantage of the classic boundary integral formulation. Nonethe- 
less, in some areas the hybrid boundary integral methods have yielded useful results. In one 
approach, Bush and Tanner" considered the steady inhomogeneous Stokes equations with the 
inertial terms treated as a pseudo-body-force. With successive iterations, this generates a regular 
perturbation expansion in Reynolds number. This method is limited to those interior flow 
problems for which such a perturbation expansion is uniformly valid. In a more general 
approach, several groups have used a boundary integral formulation with the full unsteady 
Navier-Stokes equations. Brebbia and Connor22 and Skerget23 and Wu24 and Patterson et 
review the efforts of their respective research groups. These authors use a velocity-vorticity 
approach in which the vorticity is calculated at each time step, and domain integrals and 
boundary integrals are then evaluated to solve for the fluid velocity. The vorticity transport 
equation is solved by finite differences, finite elements or via fundamental solution-domain 
integral techniques. This approach is especially suited to aerodynamics applications where the 
vorticity is confined to small regions of the flow. Outside these regions a pure boundary integral 
representation may be used for the potential flow. Other authors, Hebeker,26 Bannerjee et a1.27 
and Kakuda and Tosaka,28 have studied the Navier-Stokes equations using boundary integral 
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techniques with a primitive variables approach. Additional references for these research groups 
and others may be found in the conference proceedings mentioned above.8-16 

The goal of the present effort is to bring together certain useful features of the spectral element 
method and the boundary integral method to develop new methods for solving viscous flow 
problems. Section 2 introduces notation and develops the basic formulation. Section 3.1 shows 
how the spectral element discretization may be employed in a classic boundary integral formula- 
tion for Stokes flow, while Section 3.2 extends these concepts to domain integrals and the 
Navier-Stokes equations. These sections demonstrate the merit of the spectral discretization and 
indicate how these ideas may be applied to any boundary integral formulation. Section 4 con- 
siders the application of boundary integral techniques as a means of consolidating elemental 
solutions in a domain decomposition approach. The algorithms in this last section are more 
speculative in nature but indicate an interesting avenue for future work. 

2. BASIC FORMULATION 

We are interested in techniques for solving the equations governing the flow of an incompressible 
constant property Newtonian fluid in arbitrary geometries. These are the unsteady 
Navier-Stokes equations together with the continuity equation 

p - + u - v u  =-Vp+pVZu (: ) 
v - u = o .  (2) 

The temporal discretization of the equation follows a standard semi-implicit approach with the 
pressure and viscous terms treated implicitly, and the inertial terms treated explicitly. This yields 
a linear elliptic equation at each time step and avoids the severe O(Ax2) diffusive stability 
criterion. The stability constraint will be dictated by a Courant condition of the form 
UAx/At = O( 1). With first-order time differencing the equations become 

[ ; u + ; v p  - VV2U I+' = [; u --u . v u  7 ,  (3) 

[V - ,I"+ = 0 .  (4) 
We shall dispense with the superscripts and consider the solution of general elliptic partial 
differential equations of the form 

V2u -IX'U = b + Vp, ( 5 )  

v - u = o .  (6) 

For simplicity, we have absorbed a factor (VAL)-' into the coefficient LX' and absorbed p-' in 
the definition of p .  The coefficient ct2 and driving force b for first-order time differencing may be 
inferred from (3) above. A more common and desirable choice is to employ a second-order 
Crank-Nicolson formula for the implicit terms and third-order Adams-Bashforth for the explicit 
terms. This gives 

a2=- b =  - [cI'u]" - [ - Vp + V'U]" 
2 

vAt ' 

1 +- { y [u . VU]"-V [u. vu]"-'+d [u - vu]"- * }. 
v (7) 
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The treatment of the pressure term in some algorithms leads to an oscillation when the 
Crank-Nicolson formula is used. A modified three-term formula which is second-order accurate 
and damps the oscillations may be used for the implicit terms. This yields 

b=-[ " 12 
aZ=- 

IvAt  ' 
c1 u] - 3 [ - v p  + V2UI"-  3 [ -vp + v2u]"-1 

+; 1 { y [u . vu1n-y [" . VU]" - +$ CU.VU1" - 1 .  

The general elliptic equation (5) and (6) is the starting point for many numerical approaches, 
whether they be finite differences, finite elements or spectral methods. In the present study, we 
explore techniques for solving such systems using high-order spectral elements for the spatial 
discretization. The basic procedure in a spectral element discretization is to divide the domain 
into a moderate number of rnacroelernents, Figure 1. On each element, all variables are defined as 
high-order expansions of orthogonal polynomials in terms of local variables (t, 7). When the 
geometry discretization x(5, q )  is of the same order as that of the physical variables u(5, q), etc., the 
discretization is called isoparametric. On each element, the local variables (t, 71) are defined on the 
square [ - 1, 11.' We define collocation points on this square with reference to the respective 
orthogonal polynomials. The Gauss-Legendre points (ti, q j )  are a set of points interior to the 
element where 5 ,  and q j  are chosen as the evaluation points for an N point Gauss-Legendre 
quadrature formula, i.e. the zeroes of the N + l  order Legendre polynomial. The Gauss- 
Legendre-Lobatto points (ti ,  q j )  are a set of points extending to the boundary of the element 
corresponding to the N +  1 point Lobatto quadrature formula. In a similar fashion, one may 
define the Gauss-Chebyshev points and the Gauss-Chebyshev-Lobatto points. Finally, we 
define one-dimensional sets of points Ci along the sides of each element, where these points may be 
of Gauss type (interior to the segment) or Lobatto type (including the end points of the segment). 

As a general rule, Chebyshev and Legendre polynomial expansions have comparable accuracy 
in representing arbitrary functions. The Chebyshev polynomials are more desirable for extremely 
high-order expansions owing to the existence of fast transform algorithms. In the present effort, 
the order of the expansion is modest (by spectral standards) and matrix multiplies are equally 
efficient. Legendre polynomial expansions are preferred in some weak formulations, because the 
unit weight in Gauss-Legendre integration is consistent with the variational statement and 
eliminates additional quadrature effort. For much of the work presented here, both choices are 
acceptable and yield comparable results. 

With any of the polynomial representations discussed above, the polynomial expansions may 
be expressed as product Lagrangian interpolants through the respective collocation points. Thus, 

I I 

Figure 1. Typical geometry showing macroelement borders in a spectral element discretization 
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the geometry and all physical variables will be expressed as expansions in the form 
N N  

x(i5, Y)= 1 C xrnnhm(Ohn(v), 
m = l  n = l  

(9) 

where hm and h, are Lagrangian interpolants satisfying hm(t,) = dmn. Note that different variables 
may use different bases, e.g. velocity on a Gauss grid and pressure on a Lobatto grid. 

In a similar fashion, quantities defined along a boundary of an element may be defined in terms 
of the one dimensional interpolant 

N 

In the sections below, we will employ these discretization in a number of algorithms for the 
solution of the elliptic partial differential equations (5) and (6). 

3. BOUNDARY INTEGRAL FORMULATIONS 

The boundary integral method (or boundary element method) has proven to be popular in many 
contexts as discussed in the Introduction. Our goal in this section is to discuss its implementation 
using the high-order spectral element discretization described in Section 2. We start by consider- 
ing the implementation for the steady Stokes equations which involves only boundary integrals. 
We then consider equations of type (5) and (6) which require a domain integral as well. 

3.1. Spectral boundary integral method for Stokes equations 

flow are 
The Stokes equations and continuity equation governing incompressible low Reynolds number 

V . c =  -vp+pv2u=o ,  (1 1) 

v . u = o .  (12) 
Let u, c represent one solution of (1 1) and (12) and u*, c* represent another solution. A funda- 

mental identity for Stokes equations, analogous to Green's identity gives 

a 
- axj (Ui(r;-uTaij)=O. (13) 

Choose u*, c* to be the velocity and stress associated with the fundamental solution and 
integrate (13) over the fluid domain to obtain the integral formula 

This states that the velocity at a point xo may be expressed as a integral of the velocity u and 
surface stress f = c - n over the boundary of the domain. The vector Zi is defined as x,, - x. The 
constant in front of the integral has value C = 4 for a point in the interior of the domain, and C = 2 
for a point X g  on the boundary of the domain. The fundamental solution for two-dimensional 
Stokes flow is expressed 

Details concerning these equations may be found in Higdon." 
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In a standard problem, we apply (14) for points xo located on the boundary of the domain. 
Together with the boundary conditions on u or f, this yields a Fredholm integral equation. The 
solution of the integral equation provides the remaining boundary values for u and f. Once the 
velocity and surface stress are known around the boundary, equation (14) may be used to evaluate 
interior velocities. 

To implement the spectral element version of the boundary integral method, we divide the 
domain into a moderate number of macroelements as shown in Figure 1. For Stokes flow 
problems, we require only the discretization of the boundary. Let the geometry x(c) and the 
physical variables u(i)  and f(5) be defined as expansions in terms of the local parametric variable 
[ on each segment of the boundary; i.e. as interpolants of the form (10). These expansions may be 
defined with respect to any of the basis sets described in Section 2; i.e. Gauss-Legendre, 
Lobatto-Legendre, Gauss-Chebyshev or Lobatto-Chebyshev. It is more convenient to define the 
surface stress f a t  Gauss points, because f is not continuous at corners or at positions where the 
boundary slope is discontinuous. Choosing Lobatto points for f would require double numbering 
of the nodes at the ends of the segments to accommodate such discontinuities. On the other hand, 
u is continuous over the entire boundary, and the use of Lobatto points is consistent with this 
continuous dependence. We have successfully implemented the boundary integral algorithm with 
both Gauss and Lobatto bases for u. The results are of comparable accuracy and either choice 
works equally well. 

With the choice of the function bases determined, the next question concerns the discrete form 
of the integral equation. One may require the equation to be satisfied at discrete collocation 
points or follow a weighted residuals approach. Owing to the singular form of the kernels, and the 
resultant quadrature expense, we choose the collocation procedure. As with the function bases, 
we must then choose between Gauss and Lobatto point distributions. In all cases, Gauss points 
are preferred because they lie in the interior of the segments. Evaluation of the singular integrals 
at the ends of the segments is less convenient for two reasons. First, the constant C = 2  in (14) 
takes this simple value only for smooth sections of the boundary. If xo lies on a corner or at  
a position of discontinuous slope, C is proportional to the local solid angle subtended by the 
boundary. Such a choice needlessly complicates the analysis with no offsetting benefit. Second, if 
the velocity is evaluated at a segment end, extra caution is required to minimize round-off errors 
when two large numbers of comparable size and opposite sign are added. The use of interior 
collocation points avoids both of these problems and is the method of choice. Both 
Gauss-Legendre and Gauss-Chebyshev distributions have been used with equal success. 

The implementation of the spectral element discretization is now straightforward. Interpolants 
(10) are substituted for the respective functions u and f in (14) and numerical integrations 
performed for points xo located at the Gauss collocation positions. The result is a linear system of 
algebraic equations 

u = Af + Bu. 
The system matrices A and B are defined as integrals of the kernels and Lagrangian inter- 

polants over the boundary elements. Each matrix is of order 2 N N E ,  where N is the order of the 
polynomials and N E  is the number of boundary elements. If Lobatto points are used for u, then 
the order of the Lobatto interpolant is N + 1 to give the same number of unknowns as the N point 
Gauss basis (owing to the coupling of function values at the endpoints). The matrices A and B are 
dense, with elemental submatrices A,, and B,, giving the velocity at  points on element cx owing to 
the integrals over element b. The explicit expressions for these submatrices are 

(16) 
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where o is the differential arc length dS/d[. 
These integrals are evaluated by Gauss-Legendre quadratures with the aid of variable 

transformations. Briefly, there are four types of integrals which give slow convergence, each 
requiring a different co-ordinate stretch for efficient quadratures. These special cases are distin- 
guished by the location of [*, defined as the point on the element lying closest to the collocation 
point: (i) singular integrals with a collocation point on the element [* = [,; nearly singular 
integrals with (ii) point of closest approach [* interior to the element, (iii) point [* at end point 
with collocation point nearly on axis (iv) point (* at end point with collocation point off axis. 
A comprehensive study of the transformations required in each case are given by M ~ l d o w n e y ~ ~  
and O~chialini.~' With these techniques, integrals have been evaluated with a precision as high as 
12 significant figures. Adaptive quadratures are employed with small quadrature counts for. the 
smoothest integrands and as many as 80 points needed for 12-figure accuracy on the most difficult 
cases. 

We have employed the spectral boundary integral method for numerous Stokes flow prob- 
l e m ~ ~ ~ ,  30 involving both rectangular and general curvilinear domains. For problems with 
smooth solutions, exponential convergence is achieved consistent with the performance of other 
spectral element methods. Even for non-smooth problems, excellent convergence is achieved. 
Figure 2 shows the model geometry for a test problem with curved boundaries. We consider 
a boundary element discretization with NE=6 elements, two along the top and bottom and 
a single element at each end. Three test cases are considered. In Case I, velocity data is specified at 
all positions around the boundary. In Case I1 velocity data is supplied on the top and bottom 
surfaces, with f x ,  u, specified on the ends. In Case I and I1 the specified boundary data is taken 
from a simple parabolic flow a,= 1 - y 2 ,  u,=O. In other words, the test domain illustrated in 
Figure 2 is taken as a window on the parabolic flow field. Note that the solution in these problems 
is non-trivial, because the sinusoidal bottom wall introduces a sinusoidal dependence in the 
boundary data. In Case 111, we specify the same type of boundary conditions as for Case 11, but 
choose u = O  on the bottom, ux= 1, u,=O on the top and f,=O, u,=O on the ends. This 
corresponds to a flat plate translating above a rigid periodic wall. The boundary element 
discretization and computation time is identical for all three cases. 

Table I shows the performance of the spectral boundary element method for these three test 
cases. The condition number for the matrices is based on the estimate returned by the Linpack 
routine DGECO. Case I constitutes an integral equation of the first kind, which is known to lead 
to an ill conditioned system of equations. Despite the high condition numbers (up to 2 x lo5, we 
find spectral convergence yielding a maximum relative error in f of 1.6 x lo-' at N = 18. Note that 
the error increases somewhat at N = 20 owing to the presence of round-off errors. Slightly better 
results might be obtained using more elements; however, with these high condition numbers, it is 
difficult to achieve more than eight-figure accuracy using double precision arithmetic. 
In Case 11, we have mixed boundary data and the integral equation cannot be classified as an 

equation of either the first kind or the second kind. It is interesting that the condition numbers are 
much smaller in this case even though a major portion of the boundary has the form of a first kind 
equation. The errors in fare  similar to those of Case I, while the error in u (calculated on the end 
boundaries) is smaller by a factor proportional to the condition number. 

As a final test, in Case 111 we have solved for the periodic flow field for a flat plate translating 
over a rigid wall. Table I shows the convergence of the shear stress at the crest of the wave. The 
system matrix and condition number are identical to Case 11, and we would expect to see the same 
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Y 

X 

Figure 2. Test geometry for boundary integral solution of Stokes equations. End boundaries at x =  f 1, top boundary at 
y=0.5, bottom boundary specified by y=  -0.25 (1 +cosnx) yielding a maximum slope of 744 

Table I. Numerical test results for boundary integral solution of Stokes equations. Test geometry is shown 
in Figure 2. N is the order of the spectral element representation, N ,  is the number of quadrature points. 
Computation times (quadratures/matrix factorization) are in seconds on IBM RS 6000/320. Errors listed in 
Case,I and I1 are maximum over entire domain. Shear stress z in Case 111 is evaluated at the crest of the 

wave, x=(-1,O). 

Case I Case I1 Case 111 

Condition Condition 
N N ,  CPU No. Error f No. Error f Error u 7 

4 
6 
8 

10 
12 
14 
16 
18 
20 

8 
12 
24 
40 
48 
60 
72 
80 
80 

0.29/0.01 
0.67/0.04 
1.74/0.09 
3.7610.17 
5.8510.30 
9,171045 

13.48/0.66 
18.12/0.93 
21,6311.26 

1.1 103 2.1 x 100 

1.2 x 104 4.4 x 10-3 
2 4  104 1.2 x 10-4 
4.2 x 104 1.9 x 10-5 

1.0 x 105 4.1 x 1 0 - ~  
1.5 x 105 1.6 x 
2.0 x 105 6.9 x 10-7 

4.6 x lo3 1.5 x 10-1 

6 8  x lo4 3.7 x 

1.6 x 10' 
2,5 x 10' 
3.5 x 102 
4.5 x 102 
7.8 x lo2 
1.0 x 103 
1.4 x 103 
1.8 x 103 
2.3 x 1 0 3  

5.2 x lo-' 
4.0 x lo-' 
7.8 x 10-4 
1.5 x 10-4 
1.8 x 10- 5 

4.0 x 10-7 
1.2 x 10- 7 

1.6 x 

4.4 x 10-6 

2.0 x 10-2 
6.4 x 10-4 
1.0 10-5 
2.9 x lo-' 
1.ox 10-8 
1.9 x 10-9 
2.8 x lo-'' 
7.9 x 10-11 
1-2 x 10- 

2.25106342 
2.1 0403 540 
2.1023797 1 
2.10557399 
2.10557452 
2.10547803 
2.10547503 
2.10547764 
2.10547772 

convergence rate. This is borne out in the results where r has converged to eight significant 
figures. 

The test problems above are typical of the results one may achieve with the spectral boundary 
element method when the solution is a smooth function. Even when the solution possesses 
singularities however, this method may be employed with excellent results. Figure 3 shows the 
streamlines for a model problem involving viscous shear flow over a 3 : 1 rectangular cavity. The 
flow is driven by rigid translation of a horizontal plate two cavity widths above the top of the 
cavity. As is well-known, the surface stress is singular at the top corners of the cavity, and there is 
an infinite sequence of Moffatt eddies in the lower corners. Table I1 shows the convergence of 
shear stress at various locations along the bottom of the cavity. As noted, the convergence rate is 
excellent at  all positions across the cavity. 
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Figure 3. Streamlines for a Stokes shear flow over a rectangular cavity with aspect ratio 3:l 

Table 11. Dimensionless shear stress along bottom of 3: 1 cavity for Stokes flow illus- 
trated in Figure 3. Cavity covers interval x = [ - 1, 11. Convergence of spectral discretiz- 
ation as a function of expansion order N .  Positions x listed correspond to centers of five 

boundary elements located on cavity bottom. 

N X= -0,900 X =  -0.600 X =  -0.025 ~=0.575 x = 0.900 

3.2. Spectral boundary integral method for  Brinkman’s equation 

We return now to consideration of the elliptic equation ( 5 )  resulting from the time differenced 
Navier-Stokes equations. This equation is sometimes referred to as Brinkman’s equation. In 
other contexts, it has been employed as a model for flow in porous media with a’ representing the 
permeability. To develop an integral formulation for Brinkman’s equation, we start by rewriting 
(5) in terms of the stress tensor (T 

V a-a’u = b, V - u = 0. (18) 

Consider a solution u, a of the inhomogeneous equation (18) and choose a reference solution 
u*, a* of the homogeneous equation (e.g. with bE0). The Green’s identity for Brinkman’s equation 
gives 

Choosing u*, a* to be the fundamental solution of Brinkman’s equation and integrating over 
the domain yields 

The constant C = 2  for a point in the interior and C =  1 for a point on the boundary. 
The fundamental solution L, K for the two-dimensional Brinkman equation is given by 
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16K1(ar) 16 
-8Ko(ar)-2(ar)K1(ar)- 

where K O  and K 1  are modified Bessel functions. 
As before, the integral formula (20) evaluated for points xo on the boundary is combined with 

the boundary conditions on u, f to yield an integral equation for the unknown boundary values. 
Velocities may then be evaluated at interior points xo in terms of known function values. The 
most important difference between (14) and (20) is that the latter requires the evaluation of 
integrals over the entire domain R rather than just the boundary 22 as in (14). In most cases, this 
will prove to be the most computationally intensive part of the calculation. 

In the spectral element implementation, the domain is divided into macroelements as illus- 
trated in Figure 1. Along the boundary of the domain, the geometry and physical variables are 
discretized in the manner described above for the Stokes equations. The interior of the domain is 
discretized with product interpolants as defined in (9) using a Gauss-Chebyshev basis. The 
solution for the velocity field throughout the domain then requires three steps (i) evaluation of the 
integral formula (20) for points xo on the boundary to set-up the boundary integral system; 
(ii) solution of the linear algebraic system to determine the remaining boundary values and 
(iii) evaluation of the integrals in (20) to evaluate u at interior points. 

The discretized boundary integral equation for (20) takes the form 
u = Af +Bu + un, (23) 

where the system matrices A and B are the same as above (16), but with the Brinkman kernels 
L and K substituted in place of the Stokes kernels S and T. The techniques for efficient quadrature 
evaluation are the same and numerous quadrature tests are described by M ~ l d o w n e y . ~ ~  For an 
independent assessment of the accuracy of the boundary and domain contributions, Muldowney 
first solved the boundary integral equation for the homogeneous Brinkman equation (with b, and, 
hence, uQ= 0). For smooth test solutions, exponential convergence was observed with relative 
errors reaching for an N=20 expansion. This confirms the accuracy of the quadrature 
techniques, and demonstrates that the system matrices A and B are well-conditioned fot 
Brinkman kernels with spectral discretization. 

The next step in the implementation of the boundary integral formulation is the evaluation of 
the domain integrals to calculate un. For points well away from the macroelement of integration, 
a simple product Gauss-Legendre formula will give good results with modest quadrature counts. 
Unfortunately for points xo on the boundary or in the interior of a given element, the domain 
integrals have a singular kernel and special steps must be taken to obtain accurate integrations. 
Briefly, for points on this element, the element is divided into triangular regions as shown in 
Figure 4. Each of these regions is then mapped to a square, and product Gaussian quadratures 
applied in the mapped co-ordinates. Product Lagrangian interpolants are used to evaluate 2 and 
b at the quadrature points based on their known values on the elemental grid. This procedure has 
been used to evaluate domain integrals with relative errors as small as using quadrature 
counts as high as 48 points. Muldowney discusses mappings and refinements which can further 
reduce the quadrature effort. With independent checks on the boundary integral performance 
and on the accuracy of the domain integrals, the spectral element discretization of the Brinkman 
integral formula (20) has achieved the accuracy and convergence rates one would expect from 
a spectral method. The remaining test is to verify its temporal stability in solving the 
Wavier-Stokes equations. 
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Figure 4. Layout of triangles for subdivision of square and resulting position of quadrature points for singular domain 
integration by Gaussian quadrature 

Given an initial velocity field defined across the fluid domain, the driving force b is calculated 
using differentiation matrices applied to the spectral element discretization. The pressure field is 
not needed since b may be calculated from the velocity and previous values of b.29 (For multistep 
time formulas such as employed here (7), multiple intial fields are needed.) Given b and boundary 
conditions on u and/or f the boundary integral equation is solved for boundary values, and 
interior integrals evaluated to find u over the entire domain. The driving force b is updated and 
the calculation proceeds. 

The test problem illustrated in Figure 5 is an exact solution of the Navier-Stokes equations due 
to K o ~ a s z n a y . ~ ~  The velocity is given by 

1 
u = uo - uOePx cos ny, v = - u,, /? sin ny, 

n 

We have solved this problem on a square [- 1,1]’ and on a mapped element illustrated in 
Figure 6. 

To be more specific, the mapped element is positioned as a window on the Kovasznay flow field 
with values of velocity or surface stress supplied as boundary conditions. Various tests were 
performed over a range of Reynolds numbers, time steps, initial fields and boundary conditions. 
In the first test, the exact solution was specified as the initial field using a high-order expansion. At 
low Reynolds numbers the initial velocity errors were as small as lo-’’. Calculations were then 
conducted for several hundred time steps (with At slightly below the Courant condition) showing 
negligible growth in the velocity error. Next, calculations were performed at Reynolds numbers of 
1 , l O  and 100 on a 10 x 10 grid with increasing time steps. In each case, the relative velocity errors 
remained unchanged 0(10-’) after 300 time steps for all At less than the Courant limit. Various 
combinations of force and velocity boundary conditions were tried with stable results in all cases. 

To test the sensitivity to initial conditions, calculations were performed using initial data b=O 
which constitutes a rapid start with sharp initial gradients. In each case (Re=l ,  10, loo), the 
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Figure 5. Streamlines for Kovasznay flow given by equation (24) 

Figure 6.  Mapped element for test computations. Mapped variables (<,‘I) defined on square [ - 1, 13’. Mapped element 
defined by x =(t - 1) +exp[k(l + q)] ,  y = q  + 2k cos(l/2 n<) 

velocity errors decayed monotonically over time (50 At) in accordance with the appropriate 
viscous decay rate. 

We conclude that the boundary/domain integral formulation leads to a robust, accurate and 
stable time-stepping algorithm for the solution of the Navier-Stokes equations. The primary 
concern is efficiency. The three components of the computational effort are the evaluation of the 
domain integrals, the evaluation of the boundary integrals and the solution of the boundary 
integral equation. The first component is clearly the largest. If one stores the integrals of the 
interpolants, the quadrature counts are irrelevant and the domain integrals require an order 2Nn 
matrix multiply each time step where N n  is the total number of nodes throughout the domain. 
There is, however, an O(4N;) storage requirement. On the other hand, if one were looking at 
massively parallel architectures, one might choose to repeat the quadratures each time step. In 
this case, the memory and communication requirements are negligible and up to O(NE x N n )  
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processors could be employed with identical instructions. Similar comments apply to the 
boundary integral evaluations but with proportionately smaller operation counts and storage 
requirements. 

The final computational component is the boundary integral solution. Since this matrix is 
small, order 2Nan (number of boundary nodes), its inversion by direct methods is likely to remain 
an insignificant part of the overall computational load. Nonetheless, this effort might be further 
reduced by iterative techniques as discussed by Muldowney. In preliminary tests, partial Gaus- 
sian elimination was used as a preconditioner with generalized conjugate residual iteration, 
yielding a fivefold decrease in computation time. 

It is clear that the present spectral boundary/domain integral formulation is not competitive 
with state of the art spectral element algorithms for problems where viscous effects are important 
throughout the fluid region. It may be of great interest, however, in those applications such as 
aerodynamics where localized viscous regions border potential flow regions. In such problems, 
the spectral element discretization may be employed for both the viscous region and for the strict 
boundary integral solution for the potential flow. One may use either the primitive variable 
approach considered here or one of the alternative boundary element formulations. We have 
successfully tested the spectral boundary integral method on a variety of other elliptic equations 
including Laplace’s equation, Poisson’s equation and the Helmholtz equation. Compared to 
low-order methods, spectral element discretization offers significantly higher accuracy with the 
same number of unknowns. In most spectral methods, this increased accuracy must be balanced 
against the increased computational cost of the algorithm. In boundary integral implementations, 
the system matrices are dense, so there is no increase in bandwidth; the quadrature counts are 
dictated by the singular kernels, so there is little change in the cost of integrations. The spectral 
boundary integral method, thus, enjoys all of the advantages of other spectral methods with none 
of the extra costs. 

4. BOUNDARY INTEGRAL APPROACH TO SPECTRAL DOMAIN DECOMPOSITION 

The development of domain decomposition methods has proven to be an active area of research 
in recent years. In such an approach, the aim is to solve a number of small local problems 
independently, and then to consolidate these local representations into a globally continuous 
solution. Typically, the consolidation phase involves an iterative relaxation method to resolve 
discontinuities in velocities and stresses. In this section, we discuss the application of boundary 
integral concepts in this area. We begin by considering a local solution using a standard 
spectral-order finite element algorithm on a single element, and then show how these solutions 
may be combined in a global solution. 

4.1. Elemental formulation 

Consider the set of elliptic equations (5 )  and (6) defined on an arbitrary quadrilateral element, 
mapped to local co-ordinates (t, q)  on the square [ - 1,1]’. Define the velocity vector u on an 
N point Gauss-Chebyshev-Lobatto grid, and the pressure on a N - 1 point Gauss-Chebyshev 
interior grid. For the moment, we assume the Dirichlet conditions are supplied on the boundary 
of the element for both components of u. The elliptic equations (5) are treated as Helmholtz 
equations for each velocity component 

v2u  - a’u = g, (25) 

where g = b + Vp. 
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A variational formulation of the equation (25) requires minimization of the functional 

Vu - Vu -$a2u2 - ug] d V 

over the subspace of u satisfying the Dirichlet conditions on the boundary. 

algebraic system5 
With the spectral element discretization on the Gauss-Chebyshev grid, this yields a linear 

To satisfy continuity, one might employ a pressure Poisson approach or use a direct continuity 
constraint. In either case, a weak integral formulation or a collocation procedure may be used. 
For convenience, we chose the collocation procedure requiring pointwise satisfaction of continu- 
ity on the interior Gauss-Chebyshev grid. This leads to a linear system 

Qklmn U m n  = 0. (28) 
The linear systems (27) may be factored to express the velocity in terms of driving force b, 

boundary values of u and pressure. Substituting the results into (28) yields a system of equations 
to be solved for the pressure field. As is well-known,2 we require two additional constraints, one 
to specify the arbitrary constant pressure, and the second to eliminate the highest-order uncon- 
strained mode. With these constraints, (28) is solved for p ,  and (27) solved for u giving an accurate 
divergence free solution of ( 5 )  and (6). We have implemented these procedures using direct 
Gaussian elimination for (27) and (28). Owing to the modest number of unknowns on a single 
element, this represents a reasonable computational effort. 

It should be noted that the elemental solution procedure described above is one of many 
standard spectral formulations which might be employed on an elemental level. The use of direct 
methods to solve (27) and (28) is not necessarily the most efficient procedure. Detailed discussions 
of alternative formulations and efficient iterative techniques are given by Canuto et aL2 and 
Maday and Patera.6 In the present circumstances, the formulation given provides a simple and 
reliable elemental solver. At this stage, we emphasize that the local solution for velocity and 
pressure are only part of the total solution and do not satisfy any global-elliptic boundary value 
problem. In Section4.2, we focus on the techniques used to combine such local solutions to 
produce a globally continuous solution. 

4.2. Consolidation of elemental solutions 

We suppose that a local solution of (5) and (6) ua, pa has been determined on each element a, 
(where we reserve Greek subscripts to identify elements). Consider the domain which consists of 
that volume lying inside 0 and outside element volume 0,. For the present, let the function b be 
zero over this volume. Applying the Green's identity (19) and integrating over the volume, yields 
an integral formula similar to (20), but with no domain integral 

ua(xo) =- [Lfa -Ku,n] dS - - [Lfpl-Ku,n] dS, 
7CP 's an ZP 's an. 

where xo is a point on the boundary of the domain 80. 
The integral formula (29) defines a velocity field which is globally continuous and satisfies the 

homogeneous Brinkman equation outside element a. Combined with the solution ua, p, on the 
interior of element a, it yields a solution over all of R which is globally continuous and satisfies the 
inhomogeneous Brinkman equation inside a. To satisfy the Brinkman equation over the entire 
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domain we write an integral formula (29) for each element and sum the contributions to produce 
the global solution 

(30) u(x0) = u,,(xo) + - [Lf - Kun] dS - [Lfu - Ku,n] dS. 
V ‘s afi 

This expression may be written in an alternative form by summing over all interior segments. 
On each interior segment S,, define Au and Af to be the jump in velocity and surface stress 
between the elemental solutions on the two sides of the segment. The elemental boundary terms in 
(30) may then be written as segment sums 

NSEG 1 
u(xo) = u,,(xo) [Lf - Kun] dS - 1 - [L(Af) - K(Au)un] dS. 

y = l  nCc 
In the integral formulas (30) and (31), it is understood that u,,(xo) is the value of the local 

elemental solution evaluated at the point xo. These equations are written for a point on the 
exterior boundary an. For a point on an interior elemental boundary, the same expression 
applies with u,,(x0) replaced by the average velocity 3(uu + us) evaluated from the elemental 
solutions on the adjoining elements. Details of this derivation are given by O ~ c h i a l i n i . ~ ~  

The expression (31) is slightly more convenient because it requires only a single integral over 
each segment while the direct application of (30) would integrate over every segment twice. 

The algorithm for the global solution of (5 )  and (6)  now involves the following steps: 

(1) Specify arbitrary Dirichlet data u and solve for u,, pa on every element. 
(2) Evaluate (31) to solve for the globally continuous solution at all points on all segments (but 

(3) Solve a boundary integral equation to satisfy the boundary conditions and evaluate u and 

(4) Evaluate the boundary integral contribution for u on all interior segments S , .  
(5) Resolve for velocity interior to elements using complete values for u. 

In effect, steps 1 and 2 represent a particular solution of the partial differential equation. 
Step 3 yields the correct solution on the boundary an. Steps 4 and 5 carry this solution to the 
interior element borders and to element interiors, respectively. Although this algorithm requires 
two elemental solutions (steps 1 and 5), these are independent for every element and involve 
a modest number of unknowns. 

In principle, the Dirichlet boundary conditions on each element supplied in step 1 can be 
arbitrary; however, there are two requirements for a successfull computation. The first is that the 
boundary conditions should not upset the stability of the time-stepping algorithm. The second is 
that they should lead to a smooth and accurate elemental solution. This means that the boundary 
conditions should not degrade the exponential convergence rate of the spectral discretization. 
While this might appear to be a trivial requirement, it turns out to be quite difficult to achieve in 
practice. A well-known example illustrating this concern is a Poisson’s equation on a square, 
V2$ = 1, with homogeneous boundary condition q5 = 0. The inhomogeneous term is a constant, 
the boundary values are zero, the geometry is rectilinear, yet the problem does not possess 
a smooth solution; (b has singular third derivatives at the corners of the square. The reason is that 
the boundary conditions imply that $xx and $ y y  are zero on adjacent sides; hence, both are zero at 
the corner. One can easily specify Dirichlet conditions which are compatible with the equation at 
the corner, but this merely shifts the singular derivatives to the next higher order. Muldowney2’ 
discusses the difficulties encountered in determining boundary data which is compatible with the 
equation and all of its derivatives. 

not at points interior to elements). 

f on the boundary aQ. 
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Given the difficulty in finding appropriate conditions for an arbitrary system, one might simply 
use the values Uold from a previous time step. In a steady-state problem, the preliminary (step 1) 
values on elemental borders would converge to the correct values as the solution converged. This 
would avoid any artificially induced non-smoothness. Unfortunately, the use of old boundary 
data can induce temporal instability as discussed below. In an attempt to resolve this issue, we 
considertd classic alternatives to the use of Dirichlet conditions. Unfortunately no combination 
of Dirichlet, Neumann or Robin conditions eliminates the problem if one lacks information on 
a proper boundary specification. 

Another approach to the problem is to dispense with boundary conditions and require 
additional integral constraints on the system. For example, one might consider a constrained 
minimization, searching for the solution of (25) which minimizes a functional 

E(u)  = (Lu, Lu) dV (32) I 
on each element. Here L is a linear operator whose form affects the character of the solution. 

One can easily show that such a condition guarantees a unique solution to the partial 
differential equation. (Specifically for any E(u)  > 0 when u ZO). By appropriate choice of the 
operator L one might force the higher derivatives to decay at a favourable rate guaranteeing 
smoothness. Furthermore, one might combine these two ideas and look to minimize the function 
E(u - uold). We have tested various forms of this minimization condition with mixed results. 
Detailed tests are described below using uold, E(u) and E(u - uOld). After some experimentation, we 
chose an operator based on scaling arguments, giving 

1 E(u)=~~[(u)’+~(uf+u:)+. 1 . * + - - ( u $ + u $ )  1 dV, 
1’”n! (33) 

where 1 is a parameter O(l/cx). 
To test the overall performance of the domain decomposition algorithm outlined in steps 1-5, 

we consider a Kovasznay flow (24) with various combinations of force and velocity boundary 
conditions on two domains: a square [0, 11’ and a mapped domain illustrated in Figure 7. 

Y 
t 
I 

rl 
3 

4 

- +  x 

Figure 7. Mapped element for test computations. Top: x=(l+1)/2, y=0.90-0.1Ocos (no; right: x =  1, y=(l+[)/2; 
bottom: x=(1+()/2, y=(cz-1)/8; left: x=((’-1)/8, y = ( l + Q / 2  
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Table 111 shows the performance on the square domain with 2,4 or 9 elements. The boundary 
conditions specify the velocity u, and uy at inlet and outlet, and surface stress f' and fy on the top 
and bottom of the square. The convergence rate is consistent with expectations for a spectral 
representation (e.g. 0(106) reduction in error from N = 6 to N = 12). Table 1V shows comparable 
results for a mapped domain. Table V shows that the method may be employed with quite 
arbitrary combinations of boundary conditions, yielding similar accuracy in all cases. 

All of the results presented in Tables IIFIV are for particular boundary conditions (in step 1) 
using Dirichlet specifications with u = &Id. For some combinations of boundary conditions on the 
mapped domains (Table V), this specification lead to an unstable solution. The source of the 
instability is as follows. Given a particular boundary condition Uold, one calculates an elemental 
solution and differentiates to calculate a surface stress. For fixed driving force b, this relates the 
stresses on the boundary of the element to the velocities via some matrix M, , where f = M1 u. The 
elemental surface stress enters the boundary integral equation (30) or (31) from which one 
calculates a new boundary velocity u. Thus, if one has force boundary conditions, the boundary 
integral solution relates the boundary velocities to the surface stresses though some matrix 
M,, u=M2f. The net result is that a new velocity is calculated as u,,,=M2 M1UOld. If one has 
a single consistent representation for velocities and stresses, then M2 is exactly the inverse of 
M I  and the solution will converge if b has converged. Unfortunately, the discrete matrices 
M I  and M2 are not exactly inverses-M1 is based on a polynomial approximation to a vari- 
ational formulation, while M, is based on integrals of fundamental solutions. For some cases, 
involving mapped elements and numerous force boundary conditions, the product M2 M, has 
eigenvalues greater than 1 leading to instability. In this instability, the driving force b remains 
constant, but the homogeneous eigensolution grows exponentially. This problem may be over- 
come by employing a relaxation parameter, in effect using an average of uOld from previous time 
steps. Certain of the results in Table V with force boundary specifications used such a relaxation 
factor. 

Table 111. Maximum error in velocity and pressure for Kovasznay flow on square 
domain as a function of expansion order N for 2, 4 or 9 elements. All results are for 

Reynolds number Re = 2, except 9 element results which are for Re = 20. 

NE N ux UY P 

4 

2 6 
7 
8 
9 

10 
11  
12 

4 
5 
6 
7 
8 
9 

10 
1 1  
12 

9 8 

2.00 x 10-3 
1.33 x 1 0 - ~  
9.09 x 
2.44 x 
2.46 x 
4.16 x 
4.32 x lo-' 

1.50 x lo-* 
1.21 x 10-3 
2.19 x 10-4 
4.84 x 
2.46 x 
2-53 x lo-' 

8.53 x lo-'' 
7.36 x lo-" 

1.52 x 10-9 

3.19 x 1 0 - 7  

8.53 x 10-4 

2.09 x 10- 5 

8.83 x 1 0 - 7  
4.49 x 10- 7 

9.00 x 10-9 
8.39 10-9 

5.72 x 10-4 

5.92 x 1 0 - 7  

9.34 x 10- 

1.08 x lo-' 

6.39 x 
2.75 x 

2.05 x 
9.17 x lo-'' 
2.46 x lo-" 
1.34 x lo-'' 
7.34 x 1 0 - 8  

2.23 x lo-' 
3.26 x 10- 3 

8.76 x 10-4 
1.44 x 
2.95 x 
1.35 x 19-6 
7.25 x 1 0 - 7  

7.33 x 10-3 
1.90 x 10- 3 

6.01 x 1 0 - 5  

4434 1 0 - ~  

2.12 x 10-9 
3.26 x 10-9 

4.43 x 10-6 

9.51 x lo- '  

3.05 x 

3.31 x lo-' 
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Table IV. Maximum error in velocity and pressure for Kovasznay flow on mapped 
domain of Figure 7 as a function of expansion order N for 1, 2 or 4 elements. All results 
are for Reynolds number Re = 2. Results for 2 and 4 elements used a relaxation procedure 

with boundary data. 

NE N UX UY P 

1 4 
6 
8 

10 
12 
14 

2 8 
10 
12 

1.20 x 10- ’ 
4.90 x lo-‘ 
6.15 x 10-3 
8.50 x 10-4 
1.96 x 10-4 

5.67 x 1 0 - ~  
8.91 x 10-5 

2.86 x lo-’ 

3.29 x 

1.10 x 10- 
4.80 x lo-’ 
6.48 x 10-3 
450 x 10-4 
1.20 x 10-4 

5.35 x 
1.08 x 10-4 

2.03 x lo-’ 

5.86 x lo-’ 

1.06 x 
5.85 x lo-’ 
9.23 x lo-* 
1.88 x lo-’ 
7.55 x 10-3 
1.62 10-3 

5-20 x 10-3 

1.59 x 
2.79 x lo-’ 

4 4 2.76 x lo-’ 8.63 x lo-’ 4.88 x 
6 1.25 x lo-’ 6.10 10-3 1.06 x lo-’ 
8 433 x 10-5 4.60 x lo-’ 3.06 10-3 

10 2.64 x 3.27 x 1.60 x 10-4 
12 4.26 x lo-’ 2.25 x lo-’ 2.31 x 

Table V. Maximum error in velocity and pressure for Kovasznay flow on mapped 
domain of Figure 7 showing effect of different boundary conditions. All results are 
for Reynolds number Re = 2 with NE=4 and N = 10. Boundary condition types are 
listed in clockwise order around domain: left, top, right, bottom. Boundary 
condition specification according to type is as follows: (1) u,uy, (2)fxfy, (3) uxfy, 

(4) f x  u y  . 
BC P 

2111 2.81 x 3.02 x 2.14 x 10-4 

1222 7.06 x 7.84 x 2.54 x 10-4 
3414 3.49 x 10-6 2.29 x 1.32 x 10-4 
1422 5.96 x 3.07 x 1.26 x 10-4 
2234 4.74x 10-5 3.14 x lo-’ 3.25 x 10-4 
2121 2.64 x 3.27 x 1.60 x 10-4 

1221 6.58 x 4.17 x 2.47 x 

In an effort to eliminate this eigenmode instability, we conducted tests using the minimization 
constraint E(u) described above. This completely eliminates the instability, because the particular 
solution uses no boundary data from the previous time step. Unfortunately, the choice for E given 
above (33) is not completely successful in producing a smooth particular solution. In general, the 
errors using the minimization constraint were 0(102) higher than those using Mold with the same 
grid. Tests with a minimization constraint based on E(u - Uold) achieved accuracy comparable to 
the Dirichlet conditions using tiold and were more stable; however, they still suffered a weak 
eigenmode instability in the more extreme cases. 

In addition to the eigenmode instability, the boundary conditions required for’the particular 
solution introduce a second, more serious instability. It is well-known that virtually any method 
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employed to solve the time-dependent Navier-Stokes equations will become unstable if the level 
of discretization is insufficient to resolve the fine details of the flow field. In the present 
circumstances, the lack of proper boundary conditions for the Helmholtz equations leads to local 
boundary layers with length scale 0 (l/ol) in the elemental particular solutions. In principle, these 
boundary layers are removed from the qonsolidated solution by the segment integrals of equation 
(3 1). Unfortunately, if these artificial local boundary layers are not fully resolved by the elemental 
solution, they are not entirely removed and trigger the instability associated with inadequate 
resolution. 

The condition for resolving the local boundary layers is roughly, a2(Ax)' < 0(1), i.e. 
( A x ) ~ / v A ~ <  O(1). This means that the time step At must be greater than the explicit criteria, while 
remaining smaller than the Courant limit. For flows at moderate to high Reynolds number, the 
explicit limit might well approach the Courant limit, leaving no stable time step size. The only 
course of action is to increase the resolution, reducing the explicit limit O ( A x 2 )  below the Courant 
limit O(Ax). The extra resolution is needed only for the artificial elemental boundary layers not 
for the actual details of the fluid motion. This constraint makes the current implementation too 
costly for even modest Reynolds number flows. The Kovasznay flow at Reynolds number 20 was 
stable only on the 9 element grid of Table IV. While we have accurately calculated flows with 
slightly higher Reynolds numbers (Re=50) ,  they required still more elements. It is worth 
emphasizing that the cause of this instability is well-documented and is not related to any 
dominance of inertial terms. In fact, each of the accurate, stable computations (Re = 2)  in Table IV 
can be rendered unstable by choosing a sufficiently small time step. 

We conclude that the specification of compatible boundary conditions for the elemental 
particular solutions is of critical importance for the success of the approach. Without such 
conditions, the algorithm suffers from temporal instabilities which severely limit its range of 
application. The problem for the applied mathematician may be stated in succinct form: given 
a constrained elliptic system (5) and (6) defined on a mapped quadrilateral element with smooth 
geometry x(t,q) and smooth driving force b, can one find boundary specifications or other 
constraints leading to a smooth unique solution. In this context, we mean that u have the same 
degree of smoothness as the other functions, i.e. b, x E C(") guarantees u E C'"). A solution to this 
problem would eliminate the instabilities described above and lead to a robust algorithm for 
arbitrary domains. 

Before closing it is worth noting the potential benefits of the domain decomposition algorithm 
to motivate further effort in this area. The elemental solutions required in steps 1 and 5 may be 
accomplished through fast preconditioned iterative solution techniques. As noted previously, 
such techniques have already been demonstrated for both two- and three-dimensional flows. 
Because the elemental problems are independent, these solutions may be executed in parallel with 
no inter-element communication. Further, the small size of the elemental problems leads to 
modest operation counts and rapid convergence of the iterative solution. 

The consolidation integrals CS, in (31) would be the next major computational effort. In three 
dimensions, the consolidation integrals require two-dimensional integration over the boundary 
surfaces of each element-an immense computational burden. In fact, such an assessment ignores 
the character of the fundamental solutions L and K. These kernels involve Bessel functions in two 
dimensions and exponentials exp( - w ) / r  in three dimensions. The full kernel, however, is needed 
only in the near field over distances O(l/ol). This distance is typically a small fraction of the 
element size. Thus, the evaluation of surface integrals would be required only for a small number 
of nodes on elements immediately adjacent to the given surface. In the far field, the velocity 
associated with L and K is a potential flow. The leading term is a potential dipole decaying as r - 3  
in three-dimensional flows. Including the first n moments yields expressions accurate to 
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O ( r - ( 3  +”)). This expansion would give excellent accuracy on all elements except those bordering 
the given element. The operation count scales like N Q  x NE x n, where N o  is the totaf number of 
nodes in the domain, NE is the number of elements and n is the number of moments included in 
the far-field potential flow. Given the extremely rapid decay of higher moments, typical values for 
n might be of order four or five. Again, the computations for each element are completely 
independent and may be executed in parallel with no communication. 

The remaining contribution to the computational effort is the boundary integral solution for 
the velocities and stresses on the domain boundary. The construction of the boundary integral 
matrix involves elemental surface integrals with the same near-field/far-field behaviour discussed 
above. The inversion of the boundary integral system involves a matrix with only O(N,,)  
unknowns. Based on the preliminary tests of Muldowney for two-dimensional flows, it appears 
that these systems might be solved via preconditioned iterative methods. In fact, the iterative 
methods should be more effective for three dimensions owing to the more rapid far-field decay 
( r - 3  versus r - 2 ) .  This is an issue which merits further consideration. 

These brief comments provide only a bare outline for extension of our efforts to large scale 
three-dimensional simulations. We offer them to indicate the potential of the boundary inte- 
gral/domain decomposition approach and to stimulate further interest in this area. 

5. CONCLUSION 

In this paper, we have documented the application of spectral element discretization in three 
versions of the boundary integral method. For standard algorithms involving strictly boundary 
integrals, the development in Section 3.1 demonstrates that spectral techniques provide a power- 
ful and efficient algorithm which is easily adaptable to any of the classic equations. For those 
applications which are amenable to boundary/domain integral formulations, the results of 
Section 3.2 show that spectral elements are equally well-suited to these algorithms. The spectral 
discretization may be implemented with primitive variable as in this paper, or with any of the 
alternative formulations. The final application presented in Section 4 describes an attempt to 
employ boundary integral techniques in a domain decomposition algorithm for the 
Navier-Stokes equations. While this last method has been successfully demonstrated on some 
modest test problems, the present implementation suffers from severe stability limitations. If the 
problem concerning proper boundary conditions in the particular step can be resolved, this last 
approach has significant potential for large-scale computations in complex fluid flows. 
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